

 - 1 -

Elevation-IFSAR 1

USDA Service Center Agencies
Geospatial Data Management Team

Data Management Plan For

Elevation - IFSAR Data

June 2008
Ken Becker, Janice Sterling and Randy Frosh

I. Purpose and Scope (business case)

A. Purpose

These maps are created from X-band InterFerometric Synthetic Aperture Radar (IFSAR) high-
resolution digital elevation maps. IFSAR operates day or night, in clear or cloudy conditions. The
maps are developed by Intermap Inc., a global provider of high-resolution digital elevation map
products. The product handbook, located at http://www.intermap.com/uploads/1170106364.pdf
,contains information on the products, applications, technology, how to load the maps into various
GIS software packages and product licensing agreements.

The maps are GeoTiff format 7.5-minute by 7.5-minute units, corresponding to the USGS 1:24,000
scale topographic quadrangle map series for available areas in the United States and throughout the
world. Each 7.5-minute by 7.5-minute tile provides full coverage with overlap into adjacent tiles.
Data for locations above 56 degrees North/South are licensed in 7.5-minute by 15-minute tiles.

There are four different geospatial datasets: Orthorectified Radar Imagery (ORI), Digital Surface
Models (DSM), and Digital Terrain Models (DTM), and Correlation maps (COR). All four types
are GeoTiff format. The units for DSM and DTM are meters. The units for COR and ORI are 0-
255. The horizontal coordinates for all types are northings/eastings in meters. Spatial Reference
Information: Universal Transverse Mercator (UTM), NAD83 horizontal datum and NAVD88
(Geoid99) vertical datum.

An ORI is a grayscale image of the earth’s surface that has been corrected to remove geometrical
distortions that are a normal part of the imaging process. This product looks similar to a black-and-
white aerial photograph. The difference is that, instead of being made of visible light, the radar
pulses the ground with “flashes” of radio waves, which then return from the ground (or whatever
they strike, including buildings and trees) to the antennae to give distance and intensity
measurements. The key feature of this product is that it provides a means of viewing the earth’s
surface in a way that accentuates features far more than is possible with aerial photography. The
radar looks to the side of the aircraft and casts “shadows” that enable users to visually perceive the
elevation information in the image, even if they are unfamiliar with the underlying technology.

A DSM is a topographic model of the earth’s surface that can be manipulated using a computer. It
is comprised of elevation measurements that are laid out on a grid. These measurements are derived
from the return signals received by the two radar antennae on the aircraft. The signals bounce off
the first surface they strike, making the DSM a representation of any object large enough to be
resolved. This includes buildings, vegetation and roads, as well as natural terrain features. The key
feature of this product is that it provides a geometrically correct reference frame over which other
data layers can be draped.

A DTM is a topographic model of the bare earth that can be manipulated using a computer. A DTM
has had vegetation, buildings and other cultural features digitally removed, leaving just the
underlying terrain. This is achieved using Intermap proprietary software called TerrainFit, which

 - 2 -

Elevation-IFSAR 2

derives terrain elevations based on measurements of bare ground contained in the original radar
data (DSM). The key feature of a DTM is that it enables users to infer those terrain characteristics
that may be hidden in the DSM.

A COR is a correlation map co-registered with the elevation models. This map represents the degree
of correlation between the two radar signals received by the IFSAR system on a pixel by pixel
basis. The higher the value, the closer the two signals agreed and therefore, the more confidence
that can be placed on the accuracy of that pixel. In difficult terrains (steep slopes, dense urban
areas, and areas of shadow), the signal may have such low correlation that the pixel in the DSM
will be left blank in the interferometric processing phase and subsequently interpolated based on
surrounding pixels. In the COR file, pixels that have been interpolated will be set to 0, while all
remaining pixels will vary in value from 1 to 255, with the brightest pixels (255) having the best
correlation. There are no horizontal nor vertical accuracies associated with this data set.

B. Scope

See the status maps at: http://datagateway.nrcs.usda.gov/statusmaps.aspx for current data
availability. The dataset will continue to grow as more data is received from the contractor.

II. Acquisition

A. Data Source
1. Producer Information
a. Name

Intermap Technologies, Inc.

b. Location of Headquarters

Intermap Technologies, Inc.
400 Inverness Parkway, Suite 330
Englewood, CO 80112-5847

c. Internet Address

 http://www.intermap.com/

2. Publisher Information
a. Name

Intermap Technologies, Inc.

b. Location of Headquarters

400 Inverness Parkway, Suite 330
Englewood, CO 80112-5847

c. Internet Address

http://www.intermap.com

3. Acquisition Information
a. Delivery Media

DVDs for > 4 GB and < 20 GB

 - 3 -

Elevation-IFSAR 3

USB hard disc for > 20 GB.

b. Download URL

n/a

c. Projected Data Availability Schedule

As contracted

B. Standards Information
 1. Geospatial Data Standard

a. Standard Name and Steward Information

From Intermap product handbook, located at
http://www.intermap.com/uploads/1170106364.pdf , “Core products are created according to
tightly controlled specifications. These products only vary when the specifications are
upgraded—to reflect improvements in hardware, for example.

Intermap is an ISO 9001:2000-registered company, audited on a regular basis by Underwriters
Laboratories, Inc. Underwriters Laboratories is an independent company that checks to ensure
we document and then follow our procedures for acquiring and processing data. We have put
stringent controls in place because we know they save time and money. This makes us more
competitive and ensures that you will receive the products you ordered on time. Another
stipulation of being ISO-registered is that we must have a defined process for correcting
problems when they occur, and take measures to ensure that the problems don’t happen
again.”

b. Standard Version

None

c. Standard URL

See the product handbook at http://www.intermap.com/uploads/1170106364.pdf

2. Metadata Standard

a. Standard Name and Steward Information

FGDC Content Standards for Digital Geospatial Metadata FGDC-STD-001-1998

Data Archive Manager
Intermap Technologies Inc.
400 Inverness Parkway, Suite 330
Englewood , CO 80112-5809
Contact_Voice_Telephone: (303) 708-0955
Contact_Facsimile_Telephone: (303) 708-0952
Contact_Electronic_Mail_Address: <mailto:info@intermap.com>

b. Description of Metadata Captured

FGDC Content Standards for Digital Geospatial Metadata FGDC-STD-001-1998

c. Metadata Accuracy and Completeness Assessment

 - 4 -

Elevation-IFSAR 4

In compliance with FGDC Content Standards for Digital Geospatial Metadata FGDC-STD-
001-1998

C. Acquired Data Structure
1. Geospatial Data Format

a. Format (raster, vector, etc.)

Raster

b. Format Name

 TIFF is a non-proprietary format. It is a 32-bit floating-point raster format.

c. Data Extent

See status map on the Data Gateway: http://datagateway.nrcs.usda.gov/statusmaps.aspx
The dataset will continue to grow as more data is received from the contractor.

d. Horizontal and Vertical Resolution

The ORI has a pixel resolution of 1.25 meters, while the DSM and DTM are products with 1-
meter RMSE vertical accuracy, posted at 5-meter intervals.

e. Absolute Horizontal and Vertical Accuracy

The ORI has a pixel resolution of 1.25 meters, while the DSM and DTM are products with 1-
meter RMSE vertical accuracy, posted at 5-meter intervals.

f. Nominal Scale

1:12,000

g. Horizontal and Vertical Datum

The horizontal datum for all areas is NAD83. The vertical datum is NAVD88.

h. Projection

UTM

i. Coordinate Units

Meters

j. Average Data Set Size

The combined file size for a complete dataset (ORI, DSM, DTM, and metadata) is nearly one
megabyte per square kilometer. The breakdown, per 100 square kilometers, is as follows:
• DSM and DTM products are approximately 16 MB each
• Corresponding ORI is 65 MB

k. Symbology

None

 - 5 -

Elevation-IFSAR 5

 2. Attribute Data Format
a. Format Name

N/A - Raster data.

b. Database Size

N/A

 3. Data Model

a. Geospatial Data Structure

TIFF is a non-proprietary format. It is a 32 bit floating point grid format.

b. Attribute Data Structure

N/A - Raster data.

c. Database Table Definition

N/A - Raster data.

d. Data Relationship Definition

N/A - Raster data.

e. Data Dictionary

See product handbook at: http://www.intermap.com/uploads/1170106364.pdf

D. Policies
 1. Restrictions

a. Use Constraints

The Intermap IFSAR data is only available to the SCA and USDA agencies that have a
current paid subscription.

 U.S. Government End Users - The Product is a “commercial item” as that term is defined at
48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 (Sept. 1995) and 48 C.F.R. 227.7202-1 throughout
227.7202-4 (June 1995), all U.S. Government End Users acquire the Products with only those
rights set forth herein. Contractor/manufacturer is Intermap Technologies Incorporated,
Englewood, Colorado, USA. If the Products or any Thematic Derivative Works are used in
connection with the performance of any government contracts or subcontracts, You shall
ensure that (i) the Products and any Thematic Derivative Works shall not constitute a
deliverable under any governmental contracts or subcontracts; and (ii) in no event shall a
government entity acquire any rights other than those provided in
“Appendix A - INTERMAP TECHNOLOGIES INC. PROJECT END USER LICENSE
AGREEMENT” – in http://www.intermap.com/uploads/1170106364.pdf

b. Access Constraints

 - 6 -

Elevation-IFSAR 6

The Intermap IFSAR data is only available to the SCA and USDA agencies that have a
current paid subscription. IFSAR data can be used to produce digital and hard copy map
products, but Intermap IFSAR data are not to be redistributed outside of USDA. Intermap
IFSAR data will be available through the Data Gateway to those licensed USDA agencies.
Intermap retains all rights to the data.

c. Certification Issues

None

 2. Maintenance

a. Temporal Information

There is no temporal information because this is elevation data.

b. Average Update Cycle

As more IFSAR data is purchased from Intermap, it will become available on the Data
Gateway.

E. Acquisition Cost
 1. Cooperative Agreement

a. Description of Agreement

As more IFSAR data is purchased from Intermap, it will become available on the Data
Gateway.

b. Status of Agreement

Unknown

 3. Cost to Acquire Data

Unknown

III. Integration
A. Value Added Process

 1. Benefit to the Service Center

The IFSAR data is organized by 7.5 minute quads. High resolution elevation data is beneficial
to many SCA and USDA agencies that require high resolution elevation data. The ORI has a
pixel resolution of 1.25 meters, while the DSM and DTM are Type II products with 1-meter
RMSE vertical accuracy, posted at 5-meter intervals.

 2. Process Model

a. Flow Diagram

b. Process Description

 - 7 -

Elevation-IFSAR 7

The copyIFSAR script must be run when the maps are received. This script (see attached):
1. processes the data and moves it into the proper zone/block utm structure
2. converts it to geoTiff with COPYRASTER
3. determines correct utm zone, based on longitude of data
4. calculates statistics, and builds pyramids
5. The following extensions should be in the proper zone/block utm structure to copy to the

ifsar repository, \\v480d\qfs1\ifsar. Any other extensions will result in error messages,
and the tifs will not be created as footprints when running subsequent programs.

IFSARCOR

 n32w100h5cor.tif
 .tif
 .rrd
 .aux
 .tif.xml

 IFSARDSM

 n32w100h5dsm.tif
 .tif
 .rrd
 .aux
 .tif.xml
 .html
 .txt
 .xml
 IFSARDTM

 .tif
 .rrd
 .aux
 .tif.xml
 .html
 .txt
 .xml
 IFSARORI

 .tif
 .rrd
 .aux
 .tif.xml
 .html
 .txt
 .xml

For Creating Derivative Products for Data Q/A prep data and run ifsar_review.py.
1.Obtain block imagery data from repository ifsar directory, \\V480d.ftw.nrcs.usda.gov\qfs6,
for review processing.
2. Mosaic ori, dsm, and dtm into 16blk quads into respective raster datasets. For dtm,
eliminate the -10000 value; otherwise the derivative products will show those values.
3. Run Spatial Analyst surface tools to create derivative products of slope, hillshade and
contours. Use conversion of 3.2808399 to convert meters to feet for display, and zdelta of >
or < 1500 to determine contour interval.

For prepping and loading the data onto the Data Gateway:
1. Revise Product Description file using any new information at:

http://www.intermap.com/uploads/1170106364.pdf
2. Run CatalogFP_Maker for each product and generate the catalog shape files.

 - 8 -

Elevation-IFSAR 8

3. When there are new quads that are not already in the qd24kel index map such as quads along the
Mexican border, these quads must be added to qd24kel. CatalogFP_Maker hacks up a furball
and manufactures these quads.
• Select the quads based on the CatDesc tag !@mapindex from the fpDest map and save

these features to a new map.
• Load the .dbf from the new map into MS access. Open the imported table in design view

and delete the Bytesize and DataPath fields.
• Rename the CatID field QuadID. Rename the CatDesc field QuadName. Edit the

QuadName field to be ‘no_USGS_name’ Edit the QuadID field to remove the trailing
‘dsm’ ‘dtm’ etc., remove the preceding ‘n’ and the ‘w’ in the middle. Set the field size for
QuadID to 7.

• Edit the county FIPS code(s) into the FIP_C field.
• Merge the new map with qd24kel by using ArcMap/toolbox/Data Management

Tools/General/Merge. Merge the qd24kel map with the new map.
• After examining, rename the merged map qd24kel, put it in fpSource and send the map to

Fort Collins for storage and archiving.
• Load the qd24kel.dbf in the table qd24kel in the zoneMBRdb.mdb MS access data base on

all data service machines. Ensure that all the new quad rows are in the table.
4. Create the Status Maps for each product (link from "Status Maps" page) for each product.
5. Run MakePreviews for each product to generate the preview images and metadata for use in

Step two of the gateway ordering process.
6. Notify gateway Fort Collins team to load the catalogs, status maps and news.

 3. Technical Issues

a. Tiling

b. Compression

GeoTiff

c. Scale

1:24,000

d. Tonal Matching

None

e. Edge-matching

None

 4. Quality Control

a. Procedures

Visual quality checks using derived hillshade, slope, contours. The derived products are
compared to other available data, including but not limited to high resolution imagery,
DRG’s, and other elevation products.

b. Acceptance Criteria

Visual quality checks using derived hillshade, slope, contours. Report findings within 60 days
of receipt of data from Contractor; accept or reject within the 60-day timeframe.

 5. Data Steward

a. Name and Organization

 - 9 -

Elevation-IFSAR 9

Currently, the data steward for the received data is:
National Cartography and Geospatial Center
Natural Resources Conservation Service
US Department of Agriculture

501 Felix Street, Building 23
P. O. Box 6567
Fort Worth, Texas 76115-0567 USA

b. Responsibilities

Storage and access of the data.

B. Integrated Data Structure
 1. Geospatial Data Format

b. Format (raster, vector, etc.)

Raster

c. Format Name

GeoTiff

d. Data Extent

Same as source data

e. Horizontal and Vertical Resolution

Same as source data

f. Absolute Horizontal and Vertical Accuracy

Same as source data

g. Nominal Scale

1:12,000

h. Horizontal and Vertical Datum

Same as source data

i. Projection

UTM

j. Coordinate Units

Meters

k. Symbology

None

 2. Attribute Data Format

b. Format Name

 - 10 -

Elevation-IFSAR 10

N/A Raster data

c. Database Size

Currently over 150GB, and will continue to grow as more data becomes available and is
posted on the Data Gateway.

 3. Data Model

a. Geospatial Data Structure

GeoTiff

b. Attribute Data Structure

N/A raster data

c. Database Table Definition

N/A raster data

d. Data Relationship Definition

N/A raster data

e. Data Dictionary

N/A raster data

C. Resource Requirements
 1. Hardware and Software

This is unknown at this time.

 2. Staffing

This is unknown at this time.

D. Integration Cost
 1. Hardware and Software

This is unknown at this time.

 2. Staffing

This is unknown at this time.

IV. Delivery
A. Specifications

 1. Directory Structure
a. Folder Theme Data is Stored In

F:\geodata\elevation

 2. File Naming Convention

http://www.itc.nrcs.usda.gov/scdm/docs/SPG-GeospatialDataSetFileNamingStandard.pdf

 - 11 -

Elevation-IFSAR 11

a. List of Theme Files and The File Naming Convention

COR n<xx>w<yyy><a#>cor.ext
DSM n<xx>w<yyy><a#>dsm.ext
DTM n<xx>w<yyy><a#>dtm.ext
ORI n<xx>w<yyy><a#>ori.ext

Where xx = latitude value; yyy = longitude value; a# = USGS MRC; .ext = the file extension.
Example: n43w108c1cor.tif

B. User Information
 1. Accuracy Assessment

a. Alignment with Other Theme Geospatial Data

This elevation data should be considered sufficiently detailed for the purpose of analysis at
large scales within the limitations specified in the product handbook at
http://www.intermap.com/uploads/1170106364.pdf . Alignment with the other data layers will
not be perfect due to the fact that the data is captured at different scales and at different dates
from other data.

b. Content

This elevation data should be considered sufficiently detailed for the purpose of analysis at
large scales within the limitations specified in the product handbook at
http://www.intermap.com/uploads/1170106364.pdf

 2. Appropriate Uses of the Geospatial Data
a. Display Scale

For a hillshade image, use a scale of 1:12,000 or smaller.
For a contour map, use a scale of 1:12,000 or smaller.

b. Plot Scale

For a hillshade image, the scale of 1:12,000 or smaller.
For a contour map, the scale of 1:12,000 or smaller.

c. Area Calculations

Area Calculations are as accurate as the source data and capture scale and the algorithm used
by ESRI software.

d. Decision Making

The data is as accurate as the source data and capture scale and the algorithm used by ESRI
software

C. Maintenance and Updating

 1. Recommendations and Guidelines
a. Original data location and structure

The integrated database is at NCGC and the data is delivered to the Service Center.

b. Update Cycle

 - 12 -

Elevation-IFSAR 12

As more IFSAR data is purchased from Intermap, it will become available on the Data
Gateway.

c. Availability

As more IFSAR data is purchased from Intermap, it will become available on the Data
Gateway.

d. Change Control

This is to be determined.

 - 13 -

Elevation-IFSAR 13

copyIFSAR.py

this program will list all the raster datasets under a directory, then
Calculate the UTMZone Number based on Lat/Long, then move/copy the related
IFSAR rasters to respective directorires

Input IFSAR data: \\v480d\qfs7\IFSAR\NMUSA_Block_4Digits (here the block is the
NextMap block for the whorld

output Data: \\v480d\qfs1\ifsar\ifsarZone13(2digits)\ifsar32102(5digits latLong
block)\COR...ORI...DSM...DTM
#.....

input test directory:C:\junk\copyIFSAR\NMUSA_Block_3201
output Test directory: C:\junk\copyIFSAR\output Afterwards, create ifsar32102 and COR
ect. for the first time

Original file format from InterMap**
#****COR: Geotif and aux
#****ORI: Geotif, aux, html, txt, xml
#****DSM: ESRIGrid, html, txt, xml
#****DTM: ESRIGrid, html, txt, xml
#**

Import system modules

Import system modules
import arcgisscripting
import sys, string, os
import math
import time
import os.path
import shutil

gp = arcgisscripting.create()

gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management
Tools.tbx")
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Analysis Tools.tbx")
gp.CheckOutExtension("Spatial")
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst
Tools.tbx")

print 'start time for the copy process:', time.asctime()

all_start = time.time()

Create the Geoprocessor object

Load required toolboxes...
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Conversion Tools.tbx")

def utmZone(mrc_code,offset = 0.5):
 'Returns lat,lon,utmzone strings from mrc_code. Offset if using mrc code, moves to
left side.'

 - 14 -

Elevation-IFSAR 14

 ##print mrc_code
 lat = '%s' % mrc_code[0:2]
 ##print lat
 lon = '-%s' % mrc_code[2:5]
 left_lon = (float(lon) - offset)
print lon
 utmzone = '%i' % int(abs(abs(left_lon / 6) - 31))
print 'utmzone: ',utmzone
 if len(utmzone) == 1:
 utmzone = '0' + utmzone
 return lon,lat,utmzone

#IFSAR data location and create workspace for that location
##rasterWS = 'C:/junk/copyIFSAR/NMUSA_Block_3201'
##rasterWS = 'H:/NMUSA_Block_3187'
rasterWS = 'i:/blk3092'
#rasterWS = 'Q:/NMUSA_Block_3052_24Jan07_dv'
print 'i am here'
ws = rasterWS +'/COR'
gp.workspace = ws

#output directory
#outDir = 'C:/junk/copyIFSAR/output'
outDir = 'i:/IFSAR'
print 'i am here'

searchPattern = '*.tif'

#Going to list all the COR rasters
try:
 rasterLists = gp.listrasters(searchPattern)
except:
 print 'list Raster error', gp.GetMessages()

rasterLists.Reset()
rasterList = rasterLists.Next()

#Going to count the total quads for processing
totalQuads = 0
while rasterList:
 totalQuads = totalQuads + 1
 rasterList = rasterLists.Next()

print 'Total Quads need to be processed is ', totalQuads, 'for ', rasterWS
print

rasterLists.Reset()
rasterList = rasterLists.Next()

processedQuad = 0
#going to one on one check the raster and then copy to intended places
while rasterList:
 processedQuad = processedQuad + 1
 corRaster = ws + '/' + rasterList
print corRaster

 #get raster quad Name
 rasterQuadName = rasterList[0:9]

 - 15 -

Elevation-IFSAR 15

 #going to get longitude and then calculate the utmzone
 longitude = corRaster[-12:-9]
print 'longitude:', longitude
 #longFloat = float(longitude)
 latitude = corRaster[-15:-13]
print 'latitude:', latitude
 #latFloat = float(latitude)
 mrc_code = latitude + longitude
print 'mrc_code is: ', mrc_code
 lon,lat,utmzone = utmZone(mrc_code)
 print 'current Quad is', rasterQuadName,' at utmz ',utmzone, ' ',processedQuad, 'out
of total ', totalQuads
 #Check to see if the one degree block is exist
 oneDirUp = outDir + '/' + 'ifsarZone' + utmzone
 oneDirName = 'ifsar' + mrc_code
 oneDDirectory = oneDirUp + '/' + oneDirName
print 'oneDDirectory:', oneDDirectory

 if not gp.exists(oneDDirectory):
print 'going to create One degree block directory'
 try:
 gp.CreateFolder_management(oneDirUp, oneDirName)
 gp.refreshcatalog(oneDirUp)
 except:
 print 'Create one degree block directory error:', gp.GetMessages()

 #going to create the 4 type directory
 try:
 gp.CreateFolder_management(oneDDirectory, "COR")
 gp.CreateFolder_management(oneDDirectory, "DSM")
 gp.CreateFolder_management(oneDDirectory, "DTM")
 gp.CreateFolder_management(oneDDirectory, "ORI")
 gp.refreshcatalog(oneDDirectory)
 except:
 print 'Create the 4 Type subDirectory error:', gp.GetMessages()

 #going to copy/move each individual IFSAR data to the respective position
 inCOR = rasterWS + '/COR/' + rasterQuadName + 'cor.tif'
 inORI = rasterWS + '/ORI/' + rasterQuadName + 'ori.tif'
inCORAux = rasterWS + '/COR/' + rasterQuadName + 'cor.aux'
inORIAux = rasterWS + '/ORI/' + rasterQuadName + 'ori.aux'

 inDSM = rasterWS + '/DSM/' + rasterQuadName + 'dsm'
 inDTM = rasterWS + '/DTM/' + rasterQuadName + 'dtm'

 inORITxt = rasterWS + '/ORI/' + rasterQuadName + 'ori.txt'
 inDSMTxt = rasterWS + '/DSM/' + rasterQuadName + 'dsm.txt'
 inDTMTxt = rasterWS + '/DTM/' + rasterQuadName + 'dtm.txt'

 inORIHtml = rasterWS + '/ORI/' + rasterQuadName + 'ori.html'
 inDSMHtml = rasterWS + '/DSM/' + rasterQuadName + 'dsm.html'
 inDTMHtml = rasterWS + '/DTM/' + rasterQuadName + 'dtm.html'

 inORIXml = rasterWS + '/ORI/' + rasterQuadName + 'ori.xml'
 inDSMXml = rasterWS + '/DSM/' + rasterQuadName + 'dsm.xml'
 inDTMXml = rasterWS + '/DTM/' + rasterQuadName + 'dtm.xml'

 - 16 -

Elevation-IFSAR 16

 rasterQuadNameLow = rasterQuadName.lower()

 outCOR = oneDDirectory + '/COR/' + rasterQuadNameLow + 'cor.tif'
 outORI = oneDDirectory + '/ORI/' + rasterQuadNameLow + 'ori.tif'
 outDSM = oneDDirectory + '/DSM/' + rasterQuadNameLow + 'dsm.tif'
 outDTM = oneDDirectory + '/DTM/' + rasterQuadNameLow + 'dtm.tif'

 outCORAux = oneDDirectory + '/COR/' + rasterQuadNameLow + 'cor.aux'
 outORIAux = oneDDirectory + '/ORI/' + rasterQuadNameLow + 'ori.aux'

 outORITxt = oneDDirectory + '/ORI/' + rasterQuadNameLow + 'ori.txt'
 outDSMTxt = oneDDirectory + '/DSM/' + rasterQuadNameLow + 'dsm.txt'
 outDTMTxt = oneDDirectory + '/DTM/' + rasterQuadNameLow + 'dtm.txt'

 outORIHtml = oneDDirectory + '/ORI/' + rasterQuadNameLow + 'ori.html'
 outDSMHtml = oneDDirectory + '/DSM/' + rasterQuadNameLow + 'dsm.html'
 outDTMHtml = oneDDirectory + '/DTM/' + rasterQuadNameLow + 'dtm.html'

 outORIXml = oneDDirectory + '/ORI/' + rasterQuadNameLow + 'ori.xml'
 outDSMXml = oneDDirectory + '/DSM/' + rasterQuadNameLow + 'dsm.xml'
 outDTMXml = oneDDirectory + '/DTM/' + rasterQuadNameLow + 'dtm.xml'

 #use copyfile to directly copy geoTif and aux files for COR & ORI
 #MODIFICATION: shutil copyfile does NOT create .tif.xml for COR or ORI.
Therefore, script has been modified to use CopyRaster_management.

shutil.copyfile(inCOR, outCOR)
shutil.copyfile(inORI, outORI)
 gp.overwriteoutput = 1

 gp.CopyRaster_management(inCOR, outCOR, "", "", "", "", "","")
 gp.CopyRaster_management(inORI, outORI, "", "", "", "", "","")
shutil.copyfile(inCORAux, outCORAux)
shutil.copyfile(inORIAux, outORIAux)

 #use setNon to set -10000 elevation to ESRI NoData for DSM and DTM

 #gp.SetNull_sa(inDSM, inDSM, outDSM, "value = -10000")
 #gp.SetNull_sa(inDTM, inDTM, outDTM, "value = -10000")

 gp.CopyRaster_management(inDSM, outDSM, "", "", "", "", "","")
 gp.CopyRaster_management(inDTM, outDTM, "", "", "", "", "","")

 shutil.copyfile(inORITxt, outORITxt)
 shutil.copyfile(inDSMTxt, outDSMTxt)
 shutil.copyfile(inDTMTxt, outDTMTxt)

 shutil.copyfile(inORIHtml, outORIHtml)
 shutil.copyfile(inDSMHtml, outDSMHtml)
 shutil.copyfile(inDTMHtml, outDTMHtml)

 shutil.copyfile(inORIXml, outORIXml)
 shutil.copyfile(inDSMXml, outDSMXml)
 shutil.copyfile(inDTMXml, outDTMXml)

 gp.refreshcatalog(oneDDirectory)

 - 17 -

Elevation-IFSAR 17

 #after refresh, calculate stats and build pyramids for the COR and ORI. Basically to
create the .aux an rrd file
 gp.CalculateStatistics_management (outCOR, 1, 1, "")
 gp.BuildPyramids_management (outCOR)

 gp.CalculateStatistics_management (outORI, 1, 1, "")
 gp.BuildPyramids_management (outORI)
 gp.refreshcatalog(oneDDirectory)

 #print 'print to stop the program', printStop

 rasterList = rasterLists.Next()

print 'total time used is: ', (time.time()- all_start)/60, ' Minutes for processing ', rasterWS

sys.exit()

 - 18 -

Elevation-IFSAR 18

ifsar_review.py

'''

This program will take 7.5min Quad IFSAR data and create an ori mosaic, a dsm mosaic, and
a dtm mosaic from which derived products contours, slopes, and hillshades, are produced, for
quality control and acceptance of the ifsar data.

Required directory structure and data to run program:
<drive>:/ifsar/ifsar.shp with required fields which need to be added to attribute table:

 STATUS Short 2
DSMPATH Text 82
DTMPATH Text 82
ORIPATH Text 82
MRC_MOSAIC Text 7

<drive>:/ifsar/idx_mosaic.shp
<drive::/ifsr/idx_ned.shp

<drive>:/blk<your copied block from qfs6>

Generated products of 3 mosaics in geodatabases, with derived products in dtm geodatabase.
See this Example:

<drive:>/ifsar/n47098
 dsm47098a5
 d47098a5
 dtm47098a5
 d4798a5
 sp47098a5
 con_47098a5
 hs47098a5
 ori47098a5
 o47098a5

Modification Record:

October 16, 2006. decided to create hill shade directly from 1 degree block of NED10
 or resampled NED30. The database used is idx_hillshade. Run def hillshade
 to create 1 degree block of hillshade.

'''
import arcgisscripting
import sys, string, os
import time
import os.path

gp = arcgisscripting.create()
Create the Geoprocessor object
all_start = time.time()
print 'collection statistics time for all files: ', time.asctime()
#gp = win32com.client.Dispatch("esriGeoprocessing.GpDispatch.1")
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management
Tools.tbx")

 - 19 -

Elevation-IFSAR 19

gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Analysis Tools.tbx")
gp.CheckOutExtension("Spatial")
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst
Tools.tbx")
gp.scratchWorkspace = 'i:\\temp'
gp.workspace = "i:\\ifsar"

global root_dir
root_dir = gp.workspace

def findStats(utmzone,mrc_code):

 blk_dir = root_dir + "\\" + "n" + mrc_code[0:5]
 RasterDS = "d" + mrc_code
 dtmwksp = "dtm" + mrc_code
 ext = ".mdb"
 BlkLoc = blk_dir + "\\" + dtmwksp + ext
 TargetRaster = blk_dir + "\\" + dtmwksp + ext + "\\" + RasterDS

 OutStats = root_dir + "\\" + "st" + mrc_code + ".txt"
 if gp.exists(TargetRaster):

 try:
 gp.BandCollectionStats_sa(TargetRaster, OutStats, "BRIEF")
 print TargetRaster + ' successful'
 except:
 print 'error Stats ' + TargetRaster
 try:
 getStats(utmzone,mrc_code,OutStats)
 except:
 print 'error'

def getStats(utmzone, mrc_code, OutStats):
 print 'getStats'

 mainfile = root_dir + "\\" + "ifsar.txt"
 print mainfile
 if gp.exists(mainfile):
 outfile = open(mainfile, "a")
 else:
 outfile = open(mainfile, "w")

 count = 1
 infile = open (OutStats, "r")
 for line in infile.readlines ():

 print "Line",count,line,
 line = string.strip (line)
 print line
 theData = string.split (line, "\t")
 print count, theData
 test = line.split()
 print test
 if count == 7:

 test = line.split()

 - 20 -

Elevation-IFSAR 20

 del test[0]
 mrc = mrc_code.replace("'", " ")
 print 'this is mrcs ' + mrc
 test.append(mrc)
 rec = string.join(test)
 print rec
 min = float(test[0])
 print str(min)
 max = float(test[1])
 print str(max)
 zdelta = max - min
 print 'this is zdelta ' + str(zdelta)
 outfile.write(rec + '\n')

 count = count + 1
 infile.close()
 outfile.close()
 print 'this is delta ' + str(zdelta)
 createContour(utmzone, mrc_code, zdelta)

def createContour(utmzone, mrc_code, zdelta):
 print 'countour time ...'
 # Local variables...
 start = time.time()
 cs = "c:/Program Files/ArcGIS/Coordinate Systems/Projected Coordinate Systems/Utm/Nad
1983/NAD 1983 UTM Zone %sN.prj" % (utmzone)
 #gp.workspace = "i:\\ifsar"
 blk = "n" + mrc_code[0:5]
 mwrk = "dtm" + mrc_code + ".mdb"
 RasterWS = root_dir + "\\" + blk + "\\" + mwrk
 gp.refreshcatalog(RasterWS)

 InputRaster = RasterWS + "\\" + "d" + mrc_code

 #OutContour = "con" + mrc_code
 OutContour = RasterWS + "\\" + "con_" + mrc_code

 Zfactor = 3.2808399
 #print str(Zfactor)
 meters_to_feet = 0.304800609601
 base_offset = 0.00000000001
 BaseContour = 0
 #if int(elev_delta) < 1500:

 if zdelta < 1500:

 #contour_interval = "%1.10f" % (10 * meters_to_feet)
 ContourInterval = 20

 else:

 ContourInterval = 50

 print "the next step may take some time"

 # Process: Contour

 - 21 -

Elevation-IFSAR 21

 if not gp.exists(OutContour):
 try:
 #print "trying to Create OutContour " + OutContour
 gp.RasCon(Zfactor, InputRaster, ContourInterval, cs, BaseContour, OutContour)
 print "Successful " + OutContour

 except:
 #print error message if an error occurs
 print gp.AddMessage(gp.GetMessages(2))

 try:
 gp.refreshcatalog(RasterWS)

 except:
 print gp.AddMessage(gp.GetMessages(2))
 print 'Contour time: ', (time.time() -start) / 2

def createHillshade(utmzone, mrc_code):

 cs = "c:/Program Files/ArcGIS/Coordinate Systems/Projected Coordinate Systems/Utm/Nad
1983/NAD 1983 UTM Zone %sN.prj" % (utmzone)

 blk = "n" + mrc_code[0:5]
 mwrk = "dtm" + mrc_code + ".mdb"
 RasterWS = root_dir + "\\" + blk + "\\" + mwrk
 gp.refreshcatalog(RasterWS)

 InputRaster = RasterWS + "\\" + "d" + mrc_code
 #print InputRaster

 HS_Mosaic = RasterWS + "\\" + "hs" + mrc_code
 #print "this is HS_Mosaic " + HS_Mosaic

 print "working"
 start = time.time()

 print "this will take some time....about 15 minutes...to filter and create hillshade"

 #Process Hillshade
 if not gp.exists(HS_Mosaic):
 try:

 #gp.Hillshade_sa(InputRaster, OutputRaster, "315", "45", "NO_SHADOWS", "1")
 gp.RasHS(InputRaster, HS_Mosaic)
 #According to ESRI article 29366, it will be better to use 0.000011 as the Z value
 print "successful hillshade " + HS_Mosaic
 except:

 print gp.AddMessage(gp.GetMessages(2))

 gp.RefreshCatalog(RasterWS)

def createSlope(utmzone, mrc_code):

 - 22 -

Elevation-IFSAR 22

 #ma("slopeg = slope(elev, 0.3048)")

 print "working"
 cs = "c:/Program Files/ArcGIS/Coordinate Systems/Projected Coordinate Systems/Utm/Nad
1983/NAD 1983 UTM Zone %sN.prj" % (utmzone)

 start = time.time()
 #print (start)
 gp.AddMessage(start)

 #Local Variables

 blk = "n" + mrc_code[0:5]
 mwrk = "dtm" + mrc_code + ".mdb"
 RasterWS = root_dir + "\\" + blk + "\\" + mwrk
 gp.refreshcatalog(RasterWS)

 InputRaster = RasterWS + "\\" + "d" + mrc_code
 #InRaster = InputRaster

 OutRaster = RasterWS + "\\" + "sp" + mrc_code

 gp.refreshcatalog(RasterWS)

 #print OutRaster
 OutMeasurement= "PERCENT_RISE"
 #print InMeasurementType
 Zfactor = 1
 tempEnvironment0 = cs
 cs = tempEnvironment0
 # Process: Slope

 if not gp.exists(OutRaster):
 try:

 gp.Slope_sa(InputRaster, OutRaster, "PERCENT_RISE", Zfactor)
 #cs = tempEnvironment0
 #gp.Slope_sa(InputRaster, OutputRaster, OutputMeasurement, Zfactor)

 #gp.RasSL(InputRaster, Zfactor, OutMeasurement, cs, OutputRaster)
 print "successful " + OutRaster
 except:
 print "error"
 gp.refreshcatalog(RasterWS)
 gp.AddMessage('Slope time for creating this slope in Minutes:')
 print gp.AddMessage((time.time() - start) / 60)

def makeOri(OutFC, utmzone, mrc_code):

 gp.overwriteoutput = 1

 cs = "c:/Program Files/ArcGIS/Coordinate Systems/Projected Coordinate Systems/Utm/Nad
1983/NAD 1983 UTM Zone %sN.prj" % (utmzone)

 - 23 -

Elevation-IFSAR 23

 print "MOSAIKING ORTO TIFS WILL TAKE AT LEAST 20 -30 Minutes FOR 16
QUADS... BE PATIENT!~!!!!!!"

 all_start = time.time()
 print 'contour generation start time: ', time.asctime()
 blk = "n" + mrc_code[0:5]
 mwrk = "ori" + mrc_code + ".mdb"
 RasterWS = root_dir + "\\" + blk + "\\" + mwrk

 gp.refreshcatalog(RasterWS)

 #print "This is the outshape " + OutFC
 orifld = "ORIPATH"
 #print orifld

 TargetRaster = RasterWS + "\\" + "o" + mrc_code
 print TargetRaster
 #TargetRaster = r"i:\ifsar\n33100a5\ori.mdb\u33100a5"

 vtab = gp.CreateObject("ValueTable", 1)
 print "\n" + "Querying "
 #gp.AddMessage("\n" + "Querying " + InFC + " using " + Expression)

 try:
 rows = gp.SearchCursor(OutFC)
 row = rows.Next()
 while row:
 aVal = row.GetValue(orifld)
 print aVal
 vtab.AddRow(aVal)
 row = rows.Next()

 except:
 print gp.GetMessages(2)

 print vtab.Exporttostring()

 try:

 gp.RefreshCatalog(RasterWS)
 print "successful" + RasterWS
 except:
 print "error"

 print "BE PATIENT.....NOW COMES THE REAL LONG PART...."

 try:

 gp.Mosaic_management(vtab, TargetRaster, "LAST","FIRST", "", "", "NONE", "0")
 print "mosaicking is successful" + TargetRaster
 except:
 print gp.GetMessages(2)

 gp.refreshcatalog(RasterWS)

def makeDSM(OutFC, utmzone, mrc_code):
 print "starting makedsm function...."

 - 24 -

Elevation-IFSAR 24

 print OutFC
 blk_dir = root_dir + "\\" + "n" + mrc_code[0:5]
 RasterDS = "d" + mrc_code
 dsmwksp = "dsm" + mrc_code
 ext = ".mdb"
 BlkLoc = blk_dir + "\\" + dsmwksp + ext
 print BlkLoc

 cs =
"GEOGCS['GCS_North_American_1983',DATUM['D_North_American_1983',SPHEROID['
GRS_1980',6378137.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.017453
2925199433]]"
 print "MOSAIKING DTMS WILL TAKE ABOUT 8 minutes FOR 16 QUADS... BE
PATIENT!~!!!!!!"

 all_start = time.time()
 print 'mosaic generation start time: ', time.asctime()
 dsmfld = "DSMPATH"
 print dsmfld

 TargetRaster = blk_dir + "\\" + dsmwksp + ext + "\\" + RasterDS
 print "This is TargetRaster " + TargetRaster

 vtab = gp.CreateObject("ValueTable", 1)
 print "\n" + "Querying "
 gp.AddMessage("\n" + "Querying " + OutFC)

 try:
 rows = gp.SearchCursor(OutFC)
 row = rows.Next()
 while row:
 aVal = row.GetValue(dsmfld)
 print aVal
 vtab.AddRow(aVal)
 row = rows.Next()

 except:
 print gp.GetMessages(2)

 print vtab.Exporttostring()

 try:
 print "trying to refresh catalog " + blk_dir
 #gp.RefreshCatalog(gp.workspace)
 gp.RefreshCatalog(blk_dir)
 print "successful"
 except:
 print "error"

 print "BE PATIENT.....NOW COMES THE REAL LONG PART...."
 try:
 print "trying to mosaic"
 #gp.Mosaic_management(vtab, TargetRaster, "LAST","FIRST", "-10000", "0",
"NONE", "")
 #gp.Mosaic_management(vtab, TargetRaster, "LAST","FIRST", "", "0", "NONE", "")
 gp.Mosaic_management(vtab, TargetRaster, "LAST", "FIRST", "", "", "NONE", "0")
 print "mosaicking is successful"

 - 25 -

Elevation-IFSAR 25

 except:
 print gp.GetMessages(2)

def makeDtm(OutFC, utmzone, mrc_code):

 #local variables
 print 'dtm ' + utmzone
 gp.overwriteoutput = 1
 print "starting makedtm function...."
 blk_dir = root_dir + "\\" + "n" + mrc_code[0:5]
 RasterDS = "d" + mrc_code
 dtmwksp = "dtm" + mrc_code
 ext = ".mdb"
 BlkLoc = blk_dir + "\\" + dtmwksp + ext

 print "MOSAIKING DTMS WILL TAKE ABOUT 8 minutes FOR 16 QUADS... BE
PATIENT!~!!!!!!"

 all_start = time.time()
 print 'mosaic generation start time: ', time.asctime()
 dtmfld = "DTMPATH"
 print dtmfld

 TargetRaster = blk_dir + "\\" + dtmwksp + ext + "\\" + RasterDS
 print "This is TargetRaster " + TargetRaster

 vtab = gp.CreateObject("ValueTable", 1)
 print "\n" + "Querying "
 gp.AddMessage("\n" + "Querying " + OutFC)

 try:
 rows = gp.SearchCursor(OutFC)
 row = rows.Next()
 while row:
 aVal = row.GetValue(dtmfld)
 print aVal
 vtab.AddRow(aVal)
 row = rows.Next()

 except:
 print gp.GetMessages(2)

 print vtab.Exporttostring()

 try:
 print "trying to refresh catalog " + blk_dir
 #gp.RefreshCatalog(gp.workspace)
 gp.RefreshCatalog(blk_dir)
 print "successful"
 except:
 print "error"

 print "BE PATIENT.....NOW COMES THE REAL LONG PART...."
 InPropertyType = "ROWCOUNT"
 rc = gp.GetRasterProperties (TargetRaster, InPropertyType)

 - 26 -

Elevation-IFSAR 26

 try:
 print "trying to mosaic"

 gp.Mosaic_management(vtab, TargetRaster, "LAST","FIRST", "-10000", "0", "NONE",
"")
 print "mosaicking is successful"
 except:
 print gp.GetMessages(2)

#def verifyPath(utmzone, mrc_code):
def verifyPath(mrc_code):
 #gp.workspace = "i:\\ifsar"
 root_dir = gp.workspace

 #gp.overwriteoutput = 1
 blkbox = mrc_code[0:5]
 blk_dir = root_dir + "\\" + "n" + blkbox
 ext = ".mdb"
 dtmwksp = blk_dir + "\\dtm" + mrc_code + ext
 oriwksp = blk_dir + "\\ori" + mrc_code + ext
 print 'this is oriwksp ' + oriwksp

 #cs = "c:/Program Files/ArcGIS/Coordinate Systems/Projected Coordinate
Systems/Utm/Nad 1983/NAD 1983 UTM Zone %sN.prj" % (utmzone)

 if not gp.exists(blk_dir):
 try:
 print "trying to create " + blk_dir
 gp.CreateFolder(gp.workspace, "n" + blkbox)
 print "successful"
 except:
 print "error"
 if not gp.exists(oriwksp):

 try:

 gp.CreatePersonalGDB(os.path.dirname(oriwksp),os.path.basename(oriwksp))
 print "this is successful" + os.path.dirname(oriwksp) + "" + os.path.basename(oriwksp)

 except:

 print "error"
 print gp.AddMessage(gp.GetMessages(2))
 else:

 print "exists " + oriwksp

 gp.refreshcatalog(blk_dir)

 if not gp.exists(dtmwksp):

 try:

 gp.CreatePersonalGDB(os.path.dirname(dtmwksp),os.path.basename(dtmwksp))
 print "this is successful"

 - 27 -

Elevation-IFSAR 27

 except:
 print gp.AddMessage(gp.GetMessages(2))
 else:

 print "exists " + dtmwksp

 gp.refreshcatalog(blk_dir)
 print 'i am leaving verifypath '

 #sel_mrc(root_dir, utmzone, blkfld)

def crDTMDS(utmzone, mrc_code):

 gp.overwriteoutput = 1
 #local variables
 print "crDTMDS function"
 blk_dir = root_dir + "\\" + "n" + mrc_code[0:5]
 RasterDS = "d" + mrc_code
 dtmwksp = "dtm" + mrc_code
 ext = ".mdb"
 BlkLoc = blk_dir + "\\" + dtmwksp + ext
 RasDS = BlkLoc + "\\" + RasterDS
 cs = "c:/Program Files/ArcGIS/Coordinate Systems/Projected Coordinate Systems/Utm/Nad
1983/NAD 1983 UTM Zone %sN.prj" % (utmzone)
 Pixel_Type = "32_BIT_FLOAT"

 all_start = time.time()

 if not gp.exists(RasDS):
 try:

 gp.CreateRasterDataset_management(BlkLoc, RasterDS, "", Pixel_Type, cs, "1", "",
"#")
 print "this is successful " + RasterDS
 except:
 print gp.AddMessage(gp.GetMessages(2))

def crORIDS(utmzone, mrc_code):

 gp.overwriteoutput = 1

 #local variables
 print "crORIDS function"
 blk_dir = root_dir + "\\" + "n" + mrc_code[0:5]
 RasterDS = "o" + mrc_code
 oriwksp = "ori" + mrc_code
 ext = ".mdb"

 BlkLoc = blk_dir + "\\" + oriwksp + ext
 RasDS = BlkLoc + "\\" + RasterDS

 - 28 -

Elevation-IFSAR 28

 cs = "c:/Program Files/ArcGIS/Coordinate Systems/Projected Coordinate Systems/Utm/Nad
1983/NAD 1983 UTM Zone %sN.prj" % (utmzone)
 Pixel_Type = "8_BIT_UNSIGNED"

 if not gp.exists(RasDS):

 try:

 gp.CreateRasterDataset_management(BlkLoc, RasterDS, "", Pixel_Type, cs, "1", "",
"#")
 print "this is successful " + RasterDS

 except:
 print gp.AddMessage(gp.GetMessages(2))

def crDSMS(utmzone, mrc_code):

 gp.overwriteoutput = 1
 #local variables
 print "crDSMS function"
 blk_dir = root_dir + "\\" + "n" + mrc_code[0:5]
 print 'this is blk_dir ' + blk_dir
 RasterDS = "d" + mrc_code
 dsmwksp = "dsm" + mrc_code
 ext = ".mdb"
 dsmwkrsp = dsmwksp + ext
 print 'this is dsmwrksp ' + dsmwkrsp
 BlkLoc = blk_dir + "\\" + dsmwkrsp
 print 'this is blkLoc ' + BlkLoc
 RasDS = BlkLoc + "\\" + RasterDS
 print 'this is RasDS ' + RasDS

 cs = "c:/Program Files/ArcGIS/Coordinate Systems/Projected Coordinate Systems/Utm/Nad
1983/NAD 1983 UTM Zone %sN.prj" % (utmzone)
 Pixel_Type = "32_BIT_FLOAT"

 all_start = time.time()

 if not gp.exists(BlkLoc):
 try:
 gp.CreatePersonalGDB(blk_dir, dsmwkrsp)
 except:
 print gp.AddMessage(gp.GetMessages(2))

 if not gp.exists(RasDS):
 try:
 print 'trying to create dsm raster'
 gp.CreateRasterDataset_management(BlkLoc, RasterDS, "", Pixel_Type, cs, "1", "",
"#")
 print "this is successful " + RasterDS
 except:
 print gp.AddMessage(gp.GetMessages(2))

def cr_main(utmzone,mrc_code):

 - 29 -

Elevation-IFSAR 29

 print 'this is cr_main '

 gp.overwriteoutput = 1

 Mytoolbox = r"c:\ifsar\ifsartools\ifsar.tbx"
 print Mytoolbox

 #Mytbx = r"i:\ifsar\ifsartools\mytbx.tbx"
 gp.AddToolbox(Mytoolbox)
 #gp.AddToolbox(Mytbx)
 #Check usage
 print gp.Usage("RASblk")
 print 'i am at cr_main '
 #print gp.Usage("RasHS")
 #print gp.Usage("RasCon")
 #print gp.Usage("RasSL")

 #LOCAL VARIABLES

 blkexp = "\"MRC_MOSAIC\" = '%s'" % (mrc_code)
 #blkexp = "\"MRC_MOSAIC\" = '%s' AND \"STATUS\" = 1"
 print blkexp

 #BlkFC = "Database
Connections\\ncgcmartbase@sqlsde1.sde\\ncgcmart.BASE.idx_30x30m"
 #BlkFC = root_dir + "\\" + "idx30x30m.shp"
 InFC = root_dir + "\\" + "ifsar.shp"
 OutGeo = root_dir + "\\" + "g" + mrc_code + ".shp"
 print 'this is OutGeo ' + OutGeo
 blk = "n" + mrc_code[0:5]

 OutFC = root_dir + "\\" + "n" + mrc_code + ".shp"
 print 'this is OutFC ' + OutFC
 #cs =
"GEOGCS['GCS_North_American_1983',DATUM['D_North_American_1983',SPHEROID['
GRS_1980',6378137.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.017453
2925199433]]"
 #cs = "C:\Program Files\ArcGIS\Coordinate Systems\Geographic Coordinate
Systems\North America\North American Datum 1983.prj"

 cs = "c:/Program Files/ArcGIS/Coordinate Systems/Projected Coordinate Systems/Utm/Nad
1983/NAD 1983 UTM Zone %sN.prj" % (utmzone)
 print cs

 if not gp.exists(OutFC):

 try:
 print "running model..."
 gp.RASblk(InFC, blkexp, OutGeo, cs, OutFC)
 print "creating " + OutFC + " successful"
 except:
 print gp.AddMessage(2)
 print "CReating " + OutFC + " not successful"

 else:

 - 30 -

Elevation-IFSAR 30

 print "The feature class exists " + OutFC

 crDTMDS(utmzone, mrc_code)
 #crORIDS(utmzone, mrc_code)
 #crDSMS(utmzone, mrc_code)
 #makeOri(OutFC, utmzone, mrc_code)
 makeDtm(OutFC, utmzone, mrc_code)
 #makeDSM(OutFC, utmzone, mrc_code)
 createHillshade(utmzone, mrc_code)
 createSlope(utmzone, mrc_code)
 findStats(utmzone,mrc_code)
 #createContour(utmzone, mrc_code)

def sel_mrc(root_dir, utmzone, mrc_code):

 print "here ifsar params"
 ncgc_connect_str = IFSARParams.ncgc_connect_str
 print ncgc_connect_str
 #Select * From Win32_Directory Where FileName LIKE 'Scripts-%'"

 #sqlstr1 = '''SELECT first,last,house,street,district,town,postcode,phone
 # FROM Address WHERE %s LIKE "%s"''' % (field,value)

 #test = blkfld + "%"
 sql_str = "SELECT mrc_code FROM idx30x30 WHERE mrc_code LIKE '" + blkfld +
"%""'"
 #sql_str = "SELECT count(*) FROM idx30x30 WHERE mrc_code LIKE '" + blkfld +
"%""'"
 print sql_str
 #sql_str = "SELECT count(*) FROM ncgc.ncgc.index30m WHERE mrc_code = '%s'" %
blkfld

 #sql_str = "SELECT blk_name, utmzoneone,dbaflag FROM idx_hillshade WHERE
utmzoneone = '%s' and dbaflag = 102 ORDER BY blk_name" % utmzone

 #sql_str1 = "SELECT count(*) FROM idx_hillshade WHERE utmzone utmzone= '%s' " %
utmzone
 print sql_str
 blkList = Utilities.readSql(IFSARParams.ncgc_params,sql_str)
 count = 0
 for blk_rec in blkList:
 count = count + 1
 print blk_rec
 print str(count)

def main(status):

 gp.overwriteoutput = 1

 print 'i am here'

 Mytoolbox = r"c:\ifsar\ifsartools\ifsar.tbx"
 gp.AddToolbox(Mytoolbox)
 #Check usage

 - 31 -

Elevation-IFSAR 31

 #print gp.Usage("RasIDX")
 #print gp.Usage("RASblks")
 #nm_exp = "\"UTMZONE\" = 13 AND \"STATUS\" = 1"

 #nm_exp = "\"UTMZONE\" = %s AND \"STATUS\" = %s" % (utmzone,status)

 nm_exp = "\"STATUS\" = %s" % (status)
 print nm_exp
 #print IDXExp

 #QIDX48 = "Database Connections\\base@ncgcsde1a.sde\\base.BASE.QD1DEG48"
 #BlkFC = "Database
Connections\\ncgcmartbase@sqlsde1.sde\\ncgcmart.BASE.idx_30x30m"

 #BlkFC = root_dir + "\\" + "idx30x30m.shp"
 InFC = root_dir + "\\" + "ifsar.shp"

 OutFC = root_dir + "\\" + "selall" + ".shp"
 FreqFld = "MRC_MOSAIC"

 blk_freq = gp.workspace + "\\" + "frqnew" + ".dbf"
 if gp.exists(OutFC):
 print 'exists ' + OutFC

 if not gp.exists(blk_freq):

 try:
 print "trying to run model "
 gp.RasIDX(InFC, nm_exp, OutFC, blk_freq, FreqFld)
 print "successful"
 except:
 print "model not working"

 if gp.exists(blk_freq):

 try:

 rows = gp.SearchCursor(blk_freq)
 row = rows.Next()

 while row:

 mrc_code = row.GetValue(FreqFld)
 print mrc_code
 verifyPath(mrc_code)
 lon,lat,utmzone = utmZone(mrc_code)
 print utmzone
 cr_main(utmzone,mrc_code)
 row = rows.Next()

 except:

 print gp.AddMessage(gp. GetMessages(2))

 - 32 -

Elevation-IFSAR 32

def cleanup():
 Mytoolbox = r"i:\ifsar\ifsartools\Ifsar.tbx"
 gp.removeToolbox(Mytoolbox)

def utmZone(mrc_code,offset = 0.5):
 'Returns lat,lon,utmzone strings from mrc_code. Offset if using mrc code, moves to
left side.'
 #TODO: handle 04
 ##print mrc_code
 lat = '%s' % mrc_code[0:2]
 ##print lat
 lon = '-%s' % mrc_code[2:5]
 left_lon = (float(lon) - offset)
 ##print lon
 utmzone = '%i' % int(abs(abs(left_lon / 6) - 31))
 print 'utmzone: ',utmzone
 if len(utmzone) == 1:
 utmzone = '0' + utmzone
 return lon,lat,utmzone

#main("3056")
main(1)

